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• Stellar explosions appearing as bright spots near galaxies

• Rare: 1-2 per millenium

• Random and fleeting: wax and wane within several weeks

Type Ia Supernovae
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Type Ia Supernovae Studies

• First direct experimental evidence 
that universe is accelerating 

• Uniform peak brightness, optical 
spectra, and light curves

• Time-varying spectra of thousands 
of Type Ia supernovae needed to 
constrain estimate of acceleration 
rate

Accelerating 
Universe

Decelerating 
Universe

Accelerating 
Universe

Decelerating 
Universe

Kirshner, PNAS, 1999.
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• Noisy imagery with many artifacts

• Large data sets captured and analyzed nightly: ~30,000 images/night 
(85 Gb) and growing

Computational Difficulty

dead pixels airplanes and cosmic rays

CCD saturation reflections

fringes
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Computational Difficulty

• Noisy imagery

• Large data sets

• Important to avoid missing a single candidate

• False detections make human workload burdensome

• Early detection is critical, but difficult due to faintness

galaxy with
supernova
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Supernova Detection in Astronomical Imagery

• Reference image subtracted 
from new observed image

• Geometric and photometric 
features computed from 
subtraction subimage

• Manually tuned upper/lower 
thresholds on features 
determine candidates

• Final decision made by 
human scanners (postdocs, 
senior scientists)

The Nearby Supernova Factory
http://snfactory.lbl.gov

reference new

subtraction
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Thresholding is Fragile

Frequent adjustments to  thresholds to simultaneously minimize

 False Detections (variable stars, asteroids, image artifacts, i.e., junk)

 Missed Supernovae



















Nf

f

f


2

1



September 20, 2006

Supervised Learning Problem

• Features computed from each candidate subimage: mapping to n-
dimensional space

• Human scanning provides labels for positive and negative examples

• Compute “optimal” decision boundary in feature space

• Considerations:

 Complexity of decision boundary

 Separability of classes in feature space
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Linear SVM: Margin Maximization

Linear SVM

• compute the optimal
separating hyperplane 
between data points 
belonging to two classes

Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Linear SVM: Margin Maximization

Optimal Hyperplane

• maximize the distance from 
the decision surface to the 
nearest point in each class

• orthogonal to shortest line 
between convex hulls

• maximum margin separation

Linear SVM

• compute the optimal
separating hyperplane 
between data points 
belonging to two classes

Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Margin Maximization

• Maximize distance between two parallel 
supporting planes

• Distance = margin = 
||||
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Constrained Optimization Problem
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Lagrangian Formulation
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Nonlinear Decision Boundary

• Reality: classes may not be linearly separable

Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Nonlinear Decision Boundary

 21, xxT x



• Reality: classes may not be linearly separable

• Map points to a higher-dimensional feature space

e.g. products up to degree d
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.



September 20, 2006

Nonlinear Decision Boundary
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• Map points to a higher-dimensional feature space

• Generalized inner product is called a kernel
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Kernels



• Decision boundary is a linear combination of

support vectors, optimally chosen from training set

• Can explicitly define kernel 

to induce implicit mapping 
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wxk• Gaussian radial basis function

Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Example: 2D RBF

Schölkopf, 1998
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Handling Real Data

• No separating hyperplane, even after mapping!
• Soft margin classifiers
 Slack variables allowing points to lie inside margin:

 Or: penalty terms for number of examples that are 
support vectors, number of examples on wrong side of 
hyperplane
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Application to Supernova Recognition

LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm

underfitting

overfitting

+ region

- region

+ examples (accepted candidates)

- examples (rejected candidates)

• Overfitting:

trade-off between 
complexity of 
boundary and 
generalization error

• Parameter-selection:

 variance on 
Gaussian kernels

 constants on soft 
margin terms in 
objective function
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Imbalanced Data & Class Uncertainty

• Ratio of positives to negatives less than 1/10,000

• Many negatives in region of overlap

• Potentially mislabeled examples
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5-Fold Cross-Validation Tests

98.6% (1.1%)Positives

94.9% (0.7%)Negatives

98.6% (0.8%)Positives

May 2006 Data Set

96.2% (1.7%)Negatives

June-November 2005 Data Set
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Incremental Sampling

• ~500-1000 subs to 
scan each morning: 
sorted by SVM 
decision value

• Time-sensitive: find 
good candidates early  
to schedule follow-up 
observations that night

• Labels from high-
ranking examples: 
refine decision 
boundary
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Impact on Supernova Search

Rank by decision value 
(distance to hyperplane):
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i
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Impact on Supernova Search
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Large Digital Sky Surveys

• Ripe problems for machine learning in astrophysics

• Growing source of data in astronomy: ~ 10 TB of image data, 
~ 109 detected sources, ~ 102 measured attributes per source

• Increasingly heterogeneous data

Examples
• Search for transients: 

supernovae, GRB afterglows, 
fainter and faster phenomena

• SNe classification: 
standardizing spectra and light 
curves

• Weak Gravitational Lensing: 
measuring galaxy shapes
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Contributions

• Demonstrated potential of machine learning to have 
high scientific impact

 Integration into nightly operations for supernova 
search

 Prototype for future digital sky surveys

• Advantage of classifiers

 Can model various data sets, e.g. different 
telescopes, different lunar phases, searches for 
other transient objects

 Adapt to equipment calibrations, image 
processing software modifications by retraining

 Handle large, imbalanced data sets
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END

Joint work with Cecilia Aragon, Chris Ding, 
and The Nearby Supernova Factory at LBNL

Supernova Recognition using Support Vector Machines, R. Romano, 
C. Aragon, and C. Ding, International Conference of Machine Learning 
Applications, December 14-16, 2006. To appear. 
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Feature Transformation

• Highly peaked, skewed distributions

• May take on negative values

• Transforming some dimensions may change path of optimization
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SNFactory Features

Feature Name Feature Definition
apsig signal-to-noise ratio in aperture
perinc % flux increase in aperture from REF to NEW
pcygsig difference of flux in 2*FWHM of aperture and 0.7*FWHM; detects 

misaligned REF and NEW images)
mxy x-y moment of candidate
fwx FWHM of candidate in x
fwy FWHM of candidate in y
neighbordist distance to the nearest object in REF
new1sig signal-to-noise of candidate in NEW1
new2sig signal-to-noise of candidate in NEW2
sub1sig signal-to-noise of candidate in SUB1
sub2sig signal-to-noise of candidate in SUB2
sub2minsub1 weighted signal-to-noise difference between SUB1 and SUB2
dsub1sub2 difference in pixel coordinates between SUB1 and SUB2 (motion 

measurement)
holeinref measure of negative pixels on REF in region of candidate
bigapratio ratio of sum of positive pixels to sum of negative pixels within aperture
relfwx REF image FWHM in x divided by NEW image FWHM in x
relfwy REF image FWHM in y divided by NEW image FWHM in y roundness 

object contour eccentricity; ratio of powers in lowest order negative and 
positive Fourier contour descriptors

wiggliness object contour irregularity; power in higher order Fourier contour 
descriptors divided by total power
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Type Ia Supernovae Studies

• Stellar explosions appearing as 
bright spots near galaxies

• Uniform peak brightness, spectra, 
and temporal light curves

• Spectroscopic measurements 
provide direct experimental 
evidence that universe is 
accelerating 

• Time-varying spectra of thousands
of Type Ia supernovae needed to 
constrain estimate of acceleration 
rate

• Difficulty: rare (1-2 per millenium), 
random, and fleeting (several 
weeks)

galaxy
galaxy with
supernova

Kirshner, Science, 2003.
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Lagrangian Dual

• Begin with the primal

• Take annoying constraints 
into objective function with 
multipliers

• Minimize L for the given u

• Assuming that was an easy 
minimization, maximize over 
all positive u
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Type Ia Supernovae Studies

Kirshner, PNAS, 1999.

Accelerating 
Universe

Decelerating 
Universe

Li, Dark Matter, 2006.

Accelerating 
Universe

Decelerating 
Universe

• First direct experimental evidence that 
universe is accelerating 

• Uniform peak brightness, optical 
spectra, and light curves

• Time-varying spectra of thousands of 
Type Ia supernovae needed to 
constrain estimate of acceleration rate
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Details to Worry About

• Overfitting:

trade-off between complexity 
of boundary and 
generalization error

• Parameter-selection:

 variance on Gaussian 
kernels

 constants on soft margin 
terms in objective function: 
how much slack to allow
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More Astrophysics Applications:
Spectra Classification


